Case study research is a qualitative research method that is used to examine contemporary real-life situations and apply the findings of the case to the problem under study. Case studies involve a detailed contextual analysis of a limited number of events or conditions and their relationships. It provides the basis for the application of ideas and extension of methods. It helps a researcher to understand a complex issue or object and add strength to what is already known through previous research.

## STEPS OF CASE STUDY METHOD

In order to ensure objectivity and clarity, a researcher should adopt a methodical approach to case studies research. The following steps can be followed:

**Identify and define the research questions**– The researcher starts with establishing the focus of the study by identifying the research object and the problem surrounding it. The research object would be a person, a program, an event or an entity.**Select the cases**– In this step the researcher decides on the number of cases to choose (single or multiple), the type of cases to choose (unique or typical) and the approach to collect, store and analyze the data. This is the design phase of the case study method.**Collect the data**– The researcher now collects the data with the objective of gathering multiple sources of evidence with reference to the problem under study. This evidence is stored comprehensively and systematically in a format that can be referenced and sorted easily so that converging lines of inquiry and patterns can be uncovered.**Evaluate and analyze the data**– In this step the researcher makes use of varied methods to analyze qualitative as well as quantitative data. The data is categorized, tabulated and cross checked to address the initial propositions or purpose of the study. Graphic techniques like placing information into arrays, creating matrices of categories, creating flow charts etc. are used to help the investigators to approach the data from different ways and thus avoid making premature conclusions. Multiple investigators may also be used to examine the data so that a wide variety of insights to the available data can be developed.**Presentation of Results**– The results are presented in a manner that allows the reader to evaluate the findings in the light of the evidence presented in the report. The results are corroborated with sufficient evidence showing that all aspects of the problem have been adequately explored. The newer insights gained and the conflicting propositions that have emerged are suitably highlighted in the report.

Table of Contents

1.statistics adjusted rsquared

2.statistics analysis of variance

4.statistics arithmetic median

8.statistics best point estimation

9.statistics beta distribution

10.statistics binomial distribution

11.statistics blackscholes model

13.statistics central limit theorem

14.statistics chebyshevs theorem

15.statistics chisquared distribution

16.statistics chi squared table

17.statistics circular permutation

18.statistics cluster sampling

19.statistics cohens kappa coefficient

21.statistics combination with replacement

23.statistics continuous uniform distribution

24.statistics cumulative frequency

25.statistics coefficient of variation

26.statistics correlation coefficient

27.statistics cumulative plots

28.statistics cumulative poisson distribution

30.statistics data collection questionaire designing

31.statistics data collection observation

32.statistics data collection case study method

34.statistics deciles statistics

36.statistics exponential distribution

40.statistics frequency distribution

41.statistics gamma distribution

43.statistics geometric probability distribution

46.statistics gumbel distribution

49.statistics harmonic resonance frequency

51.statistics hypergeometric distribution

52.statistics hypothesis testing

53.statistics interval estimation

54.statistics inverse gamma distribution

55.statistics kolmogorov smirnov test

57.statistics laplace distribution

58.statistics linear regression

59.statistics log gamma distribution

60.statistics logistic regression

63.statistics means difference

64.statistics multinomial distribution

65.statistics negative binomial distribution

66.statistics normal distribution

67.statistics odd and even permutation

68.statistics one proportion z test

69.statistics outlier function

71.statistics permutation with replacement

73.statistics poisson distribution

74.statistics pooled variance r

75.statistics power calculator

77.statistics probability additive theorem

78.statistics probability multiplicative theorem

79.statistics probability bayes theorem

80.statistics probability density function

81.statistics process capability cp amp process performance pp

83.statistics quadratic regression equation

84.statistics qualitative data vs quantitative data

85.statistics quartile deviation

86.statistics range rule of thumb

87.statistics rayleigh distribution

88.statistics regression intercept confidence interval

89.statistics relative standard deviation

90.statistics reliability coefficient

91.statistics required sample size

92.statistics residual analysis

93.statistics residual sum of squares

94.statistics root mean square

96.statistics sampling methods

98.statistics shannon wiener diversity index

99.statistics signal to noise ratio

100.statistics simple random sampling

102.statistics standard deviation

103.statistics standard error se

104.statistics standard normal table

105.statistics statistical significance

108.statistics stem and leaf plot

109.statistics stratified sampling

112.statistics tdistribution table

113.statistics ti 83 exponential regression

114.statistics transformations

116.statistics type i amp ii errors

119.statistics weak law of large numbers